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Abstract
Efforts to apply gridded root-zone soil moisture (RZSM) products for irrigation decision-support in vineyards are currently 
hampered by the difficulty of obtaining RZSM products that meet required accuracy, resolution, and data latency require-
ments. In particular, the operational application of soil water balance modeling is complicated by the difficulty of obtaining 
accurate irrigation inputs and representing complex sub-surface water-flow processes within vineyards. Here, we discuss 
prospects for addressing these shortcomings using the Vineyard Data Assimilation (VIDA) system based on the assimilation 
of high-resolution (30-m) soil moisture information obtained from synthetic aperture radar and thermal-infrared (TIR) remote 
sensing into a one-dimensional soil water balance model. The VIDA system is tested retrospectively (2017–2020) for two 
vineyard sites in the California Central Valley that have been instrumented as part of the Grape Remote sensing Atmospheric 
Profile and Evapotranspiration eXperiment (GRAPEX). Results demonstrate that VIDA can generally capture daily temporal 
variations in RZSM for vertical depths of 30–60 cm beneath the vine row, and the assimilation of remote sensing products 
is shown to produce modest improvement in the temporal accuracy of VIDA RZSM estimates. However, results also reveal 
shortcomings in the ability of VIDA to correct biases in assumed irrigation applications—particularly during well-watered 
portions of the growing season when TIR-based evapotranspiration observations are not moisture limited and, therefore, 
decoupled from RZSM. Prospects for addressing these limitations and plans for the near-real-time operational application 
of the VIDA system are discussed.
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Introduction

Irrigated crops make a large and growing contribution to 
global agricultural production (Kukal and Irmak 2019). 
However, the expanding water-use footprint for irrigation 
is increasingly coming into conflict with competing water-
resource users. Such conflict is particularly critical for 
growers of high-value fruit and nut crops that rely heavily 
on irrigation in water-limited areas like the Central Val-
ley of California. Recent droughts in the western United 
States have led to the increased exploitation of groundwa-
ter resources within the Central Valley to offset large, and 
likely growing, inter-annual variability in surface water 
availability (due, e.g., to large year-to-year variations in 
winter snowfall within the Sierras Jasechko and Perrone 
2020). In response, the Californian Sustainable Ground-
water Management Act now mandates that planned irri-
gation activities be made consistent with the sustainable 
extraction of groundwater resources. Given that climate 
conditions in central and eastern California appear to be 
trending towards a prolonged (potentially multi-decadal) 
period of increased inter-annual variability (Diffenbaugh 
et al. 2015), perhaps superimposed on a concurrent dry-
ing trend (Huning and AghaKouchak 2018), significant 
advances in irrigation efficiency are needed to maintain 
the economic value of Central Valley fruit and nut crops 
while simultaneously ensuring the long-term sustainability 
of its groundwater resources.

At least in theory, such opportunities exist for Califor-
nia grape growers. Studies have consistently demonstrated 
that, if properly timed and calibrated, vineyard irrigation 
levels can be reduced below evapotranspiration rates (i.e., 
deficit irrigation) without incurring significant negative 
impacts on grape yield. In fact, the proper temporal allo-
cation of modest water stress can, in many cases, improve 
the quality of grapes for wine production (Acevedo-Opazo 
et al. 2010; Zarrouka et al. 2012). Likewise, the increased 
utilization of variable rate drip irrigation (VRDI) systems 
in vineyards provides a means by which managers can uti-
lize fine-resolution biophysical observations to spatially 
optimize irrigation (Sanchez et al. 2017).

However, excessive water stress can damage the car-
rying capacity of grapevines over multiple seasons and 
poses a serious risk for producers (Shellie 2014; Keller 
et al. 2016). Such risk places relatively stringent accu-
racy requirements on biophysical variables used to map 
the time/space evolution of vine water stress. Of these 
variables, root-zone soil moisture (RZSM) is particularly 
important. Plant-available soil water (PAW, the percent-
age level of RZSM above permanent wilting point and 
below field capacity) is an important indicator for timing 
the onset of irrigation in response to the drying of the 

soil column during the early growing season. Later in the 
growing season, continuous monitoring of RZSM helps 
ensure that irrigation meets crop water-use requirements 
(i.e., evapotranspiration, ET)–which enables managers 
to calibrate the application of water stress if necessary. 
Unfortunately, RZSM levels are notoriously difficult to 
track in a fine-resolution and spatially continuous man-
ner and existing products currently do not meet accuracy 
requirements for the credible management of vineyard irri-
gation and water-stress levels (Lei et al. 2020).

When applied individually, all existing RZSM monitor-
ing approaches suffer from serious limitations. For example, 
while strides have been made in the development of in situ 
soil moisture instrumentation, such observations typically 
reflect RZSM conditions within only a highly localized 
spatial domain (on the order of 10  cm3). Upscaling such 
fine-scale observations into a spatially continuous analysis 
is challenging due to the very high level of unorganized, 
fine-scale RZSM variability typically present in an agri-
cultural field (Hupet and Vanclooster 2002). VRDI adds an 
additional level of complexity to this issue by introducing 
structured RZSM spatial variability. These difficulties can 
be overcome through in situ measurement only via the use 
of extremely intensive (i.e., dense) and costly soil RZSM 
networks. As a result, the application of ground-based soil 
moisture sensors to operational irrigation scheduling has 
generally been confined only to a few limited testbed sites.

Likewise, advances have been made in the application of 
satellite remote sensing approaches to retrieve soil moisture 
(e.g., Oh 2004; Naeimi et al. 2009; Chan et al. 2018; Al 
Bitar et al. 2017; Das et al. 2019). Relative to ground-based 
observations, these approaches have obvious advantages 
with regard to their scalability over large spatial domains. 
However, the most accurate of these approaches, L-band 
passive microwave remote sensing, suffers from poor spatial 
resolution (generally > 10 km) and, therefore, remains inca-
pable of resolving individual agricultural production units. 
Much finer resolution (< 100 m) is possible via the use of 
synthetic aperture radar (SAR) to process active microwave 
backscatter measurements (Attarzadeh et al. 2018; El Hajj 
et al. 2017; Gao et al. 2017). However, this improved reso-
lution comes at a cost of increased sensitivity to surface 
roughness and vegetation structure and a decrease in the 
temporal frequency of retrievals. In addition, all microwave 
techniques, whether active or passive, are constrained by 
their shallow vertical penetration depth that limits them to 
the retrieval of only near-surface (0−5 cm) soil moisture 
(SSM) conditions.

An alternative remote-sensing strategy is the use of 
thermal-infrared (TIR) remote sensing to detect the onset 
and level of plant water stress via an increase in vine-can-
opy temperature (Gerhards et al. 2019). This approach has 
the large advantage of reflecting root-zone, as opposed to 
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simply surface, soil moisture availability since the ability 
of the vine canopy to cool itself down to air temperature 
levels reflects, among other things, its capacity to extract 
water from the root-zone for transpiration. In this way, TIR 
surface temperature retrievals, and evapotranspiration (ET) 
estimates based on these retrievals, can be used as a proxy 
for RZSM (Hain et al. 2009). However, TIR approaches are 
limited only to clear-sky conditions. In addition, the role of 
important co-varying parameters (e.g., leaf area index and 
micrometeorological variables) must be properly accounted 
for when attempting to constrain RZSM using TIR-based ET 
retrievals (Crow et al. 2008).

A third, and final, potential source of RZSM information 
are spatially distributed and vertically discretized soil water 
balance models (e.g., Verdoodt et al. 2005; Crow et al. 2008; 
Noorduijn et al. 2018). These models attempt to predict the 
transport of rainfall or irrigation through the soil column 
using meteorological observations and water and energy bal-
ance considerations. They provide RZSM estimates that are 
continuous in both space and time and can be set-up to rep-
resent nearly any potential combination of discrete vertical 
soil layers. However, they are based on the implicit assump-
tion that all key factors describing the temporal evolution 
of RZSM and ET are known and accurately represented 
by the model. Given the known complexity of sub-surface 
flow conditions in agricultural fields (Gish et al. 2005), this 
assumption is extremely optimistic in vineyards. In addi-
tion, water balance models require timely, accurate irrigation 
inputs to track RZSM and ET. Such information is almost 
never available over large geographic areas of individually 
operated units, which severely limits the application of soil 
water balance models within irrigated croplands.

Given the limitations of any individual RZSM monitoring 
approach, one promising path forward uses data assimila-
tion techniques that combine multiple strategies for monitor-
ing RZSM within a unified analysis. Data assimilation is a 
mathematical strategy for guiding a dynamic model (e.g., a 
soil water balance model) using incomplete and non-perfect 
observations (e.g., remotely sensed SSM and ET) that have 
a known relationship with, potentially unobserved, model 
states of interest (e.g., RZSM). Here, we describe the devel-
opment and operational application of the Vineyard Data 
Assimilation (VIDA) system to track high-resolution (30-
m) daily RZSM variations within California Central Valley 
vineyards. VIDA is based on the simultaneous assimilation 
of SAR-based SSM retrievals and TIR-based ET estimates 
into a soil water balance model using an Ensemble Kalman 
Filter (EnKF). In this way, VIDA attempts to address defi-
ciencies in bottom-up water balance modelling using (uncer-
tain and incomplete) top-down remote sensing retrievals of 
SSM and ET.

This paper will describe the VIDA system and its recent 
application within several California vineyards instrumented 

as part of the Grape Remote sensing Atmospheric Profile 
and Evapotranspiration eXperiment (GRAPEX; Kustas et al. 
2018). In particular, we will discuss prospects for meeting 
RZSM product requirements for vineyard irrigation manage-
ment using a combination of soil–water balance modelling 
and current (and planned) satellite remote sensing sources. 
We will also highlight remaining data assimilation chal-
lenges affecting the VIDA RZSM analysis.

Vineyard data assimilation (VIDA) system

The VIDA system consists of the following two parts: a 
soil water balance model (“WEB-SVAT”) and an EnKF 
procedure for correcting soil–water balance errors via the 
assimilation of TIR-based ET and SAR-based SSM retrievals 
(“Ensemble kalman filtering”).

WEB‑SVAT

Soil water balance modelling in VIDA is based on the 
hourly, 30-m application of the Water-Energy-Balance 
Soil–Vegetation–Atmosphere-Transfer (WEB-SVAT) model 
created by merging the modified two-source energy balance 
(TSEB) scheme of (Norman et al. 1995); see “WEB-SVAT 
energy balance” with the simplified force-restore approach 
to the soil water balance introduced by (Noilhan and Planton 
1989) and later adapted by both (Montaldo et al. 2001; Crow 
et al. 2008) (“WEB-SVAT soil–water balance”). Given the 
importance of seasonality on vineyard water balance con-
siderations, “Vineyard phenological stages” outlines our 
approach for representing discrete phenological stages in 
seasonal vine and interrow cover-crop development.

Due to the clumped nature of the vineyard vegetation 
canopy, as well as its concentrated root system underneath 
the vine-row, a two-tile (i.e., vine-row and interrow) spatial 
surface geometry is adopted (see Fig. 1). Note that indi-
vidual vine-rows are not explicitly resolved by our 30-m 
application resolution. Therefore, the WEB-SVET model is 
designed to conceptually represent sub-grid vine-row and 
interrow tiles. This row/interrow tile approach allows for a 
detailed representation of vineyard vegetation dynamics due 
to both seasonal growth stages (e.g., budbreak, flowering, 
and veraison) and management activities (e.g., cover-crop 
seeding and removal, vine pruning, and harvest).

WEB‑SVAT energy balance

Energy balance estimates generated by WEB-SVAT are 
based on the application of the TSEB canopy model to 
estimate a single pair of canopy transpiration and soil 
evaporation flux estimates within each 30-m WEB-SVAT 
pixel. These (pixel-scale) flux estimates are then extracted 
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from soil moisture states within (sub-pixel) vine-row and 
interrow tiles using assumptions presented in “Vineyard 
phenological stages” and illustrated in Fig. 1. Note that 
the TSEB formulation presented here contrasts with the 
classical TSEB application (see, e.g., Norman et al. 1995) 
in that surface temperatures are internally calculated by 
the WEB-SVAT via energy balance considerations—as 
opposed to externally observed using TIR remote sens-
ing. Nevertheless, the assumed structure/geometry of the 
TSEB model is not altered.

The TSEB vegetation canopy model partitions energy 
fluxes between soil and vegetation via separate energy bal-
ance equations as follows:

where H and LE are sensible and latent heat fluxes, and sub-
scripts “S” and “C” denote the soil and canopy, respectively. 
Net radiation ( RN ) received by the canopy ( RN,C ) and soil 
( RN,S ) is calculated based on the radiative transfer model of 
(Campbell and Norman 1998) using observations of down-
ward solar radiation ( S ) and above-canopy downward long-
wave radiation ( L↓ ) as follows:

where ε, �, and T are the emissivity, albedo, and temperature 
of soil and canopy, respectively, σ the Stephen–Boltzman 
constant, and τ the canopy transmissivity for both shortwave 
(subscript “sw”) and longwave (“lw”) radiation. Ground heat 
flux G is calculated as a fraction of RN,S that varies as a 

(1)
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function of time of day using a double asymmetric sigmoid 
function (Nieto et al. 2019).

Following (Hashemian et al. 2015), the parallel version of 
the TSEB canopy model is adopted for sensible heat and latent 
heat calculations as follows:

where �air is air density, and CP is the specific heat of air 
at constant pressure. RA is the above-canopy aerodynamic 
resistance, and RA,S the within-canopy soil aerodynamic 
resistance.

Potential latent heat flux from the canopy ( LEC,max ) is then 
estimated by the Penman–Monteith equation:

where γ is the slope of the saturation vapor pressure versus 
temperature curve; eS

(

TC
)

 is the saturated vapor pressure 
at average canopy height; ea is the observed above canopy 
vapor pressure; and RC is the canopy resistance to vapor 
transfer.

To estimate actual canopy transpiration, LEC,max estimates 
acquired from (4) are combined with the fPET parameter 
derived from soil water availability and root density distribu-
tion considerations (see “WEB-SVAT soil–water balance”). In 
particular, fPET is applied in the TSEB iteration to estimate the 
fraction of LEC,max to be extracted from each rootzone layer 
(except the top 0–5 cm layer) to determine the total actual 
canopy transpiration:

(3)
HC = �airCP
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∕RA
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∕
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Fig. 1  Conceptual representa-
tion of the three phenological 
stages in the VIDA two-tile sys-
tem of vegetation dynamics in a 
vineyard. ES and EC represent 
soil evaporation and canopy 
transpiration; SSM and RZSM 
represent surface and rootzone 
soil moisture, respectively. See 
“Vineyard phenological stages” 
for a detailed description of 
each stage
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where fPET_R,i and fPET_IR,i are the fraction of LEC,max to be 
extracted from the ith soil layer of the vine-row and interrow, 
respectively. Latent heat flux due to direct soil evaporation 
is then calculated as follows:

where RS is the soil resistance to surface evaporation calcu-
lated following (Sellers et al. 1992). Dividing LEC and LES 
by the latent heat of vaporization converts them into equiva-
lent (water depth per time) estimates of EC and ES, respec-
tively, that are required for WEB-SVAT soil water balance 
calculations described below in “WEB-SVAT soil–water 
balance”.

At each hourly WEB-SVAT time step, model estimates 
of TC and TS are derived using an iterative root-finder that 
converges to temperature estimates that simultaneously 
respect all constraints in (1–6). For the first time step in a 
simulation, TC and TS are initialized to match observed 2-m 
air temperature. The process is terminated when a maxi-
mum iteration number is reached; a warning is generated and 
TC and TS values from the last iteration are used in subse-
quent calculation. The Newton–Raphson method employed 
ensures that in such rare instances, the solutions achieved are 
a better approximation to the true values of TC and TS under 
given conditions than the over-simplified initial guess and, 
therefore, accepted instead of being discarded.

Vineyard phenological stages

As noted above, the WEB-SVAT water balance is solved 
separately for sub-pixel vine-row and interrow tiles. Due 
to strong seasonality in the water balance for these tiles, 
we divide the annual cycle of a typical vineyard into three 
general stages (see Fig. 1).

Stage I is characterized by grass-only vegetative cover 
between the start of vine-leaf senescence (October/Novem-
ber) until budbreak during the following spring (March/
April). As such, it is assumed to begin when autumn Nor-
malized Difference Vegetation Index (NDVI) values fall 
below 0.33 (or October 1, whichever comes first) and ends 
on March 31 of the following year. During this stage, only 
the interrow grass is assumed to be actively transpiring, and 
the vine-row is treated as bare soil that provides the sole 
source for ES. Cover-crop roots are concentrated (– 90%) in 
the upper 90 cm and assumed to grow slowly deeper (e.g., 
root fraction between 30 and 60 cm increases from – 10 to 
25%) from the beginning of Stage I until April 1—at which 

(5)LEC =

n
∑

i=2

(fPET_R,i + fPET_IR,i) ⋅ LEC,max,

(6)LES = �Cp�
−1

[

es
(

TS
)

− ea

RA,S + RA + RS

]

,

point they are assumed to be static until the end of Stage II 
(see below).

Stage II is characterized by concurrent grass and vine-
canopy cover. It begins with vine-leaf emergence (March/
April) and ends in early summer (June) when the interrow 
cover crop is normally mowed or dry. For vineyards located 
in the California Central Valley, Stage II is assumed to run 
between April 1 and May 31. During this period, the vine-
row and interrow contribute to both EC and ES. Therefore, 
both water flux types are simultaneously extracted from all 
sub-pixel tiles. During Stage II, vine roots grow progres-
sively deeper (e.g., root fraction below 90 cm increases 
from – 25 to 45%) and reach a final static distribution that 
remains constant throughout Stage III.

Stage III is characterized by vine-only vegetation cover 
and runs from early summer through harvest. The stage is 
assumed to begin on June 1 and lasts until the NDVI con-
dition for the onset of Stage I is met (see above). During 
Stage III, the interrow cover crop is assumed to be removed 
or senescent—leaving only non-transpiring stubble or bare 
soil in the interrow. Due to a lack of summer rainfall in the 
California Central Valley, soil water recharge (via irrigation) 
as well as canopy transpiration is generally limited to the 
vine-row during this stage. Hence, EC is extracted solely 
from the vine-row and ES solely from the interrow.

WEB‑SVAT soil–water balance

ES and EC estimates obtained from (5) to (6) are combined 
with rainfall and/or irrigation inputs to solve the multi-layer 
soil water balance equations following (Lei et al. 2020). The 
soil water profiles of the vine-row and interrow are calcu-
lated separately based on the vertical discretization of the 
soil column into five layers: 0–5 cm, 5–30 cm, 30–60 cm, 
60–90 cm, and below 90 cm. The thickness of the deepest 
layer depends on the soil profile depth obtained from the 
SSURGO (Soil Survey Geographic Database) dataset.

While rainfall is uniformly applied to both sub-pixel tiles, 
irrigation is received only by the vine-row tile (see Fig. 1). 
In addition to the (horizontal) vine-row/interrow separation 
described above in “Vineyard phenological stages”, sources 
for ES and EC are also separated along the soil vertical pro-
file. In particular, ES is extracted only from the surface layer 
(0–5 cm) while EC is extracted throughout the soil profile 
according to the assumed vertical distribution of vine and 
cover-crop roots.

As mentioned in “WEB-SVAT energy balance”, the 
energy and soil water balance components of WEB-SVAT 
are linked by the fPET parameter, which represents the esti-
mated fraction of potential transpiration that can be extracted 
from rootzone soil layers. Given estimated levels of soil 
water in each vertical soil layer, as well as the fraction of 
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root density in each rootzone soil layer, fPET is calculated via 
an exponential root-water uptake model (see Li et al. 2001; 
Lei et al. 2020). In addition to evaporative fluxes, WEB-
SVAT also captures inter-layer diffusive and drainage water 
fluxes using the approach described in (Hashemian et al. 
2015).

Ensemble kalman filtering

WEB-SVAT RZSM estimates are degraded by a range of 
error sources–most notably our ignorance of true irrigation 
inputs, sub-surface water flow patterns, and spatial varia-
tions in crop water loss. VIDA attempts to mitigate these 
errors through the assimilation of remotely sensed SSM and 
ET products into WEB-SVAT. The Ensemble Kalman Filter 
(EnKF) is a widely used sequential data assimilation tech-
nique that integrates discrete observations with continuous 
model background estimates. The relative weighting factor 
(i.e., Kalman gain) applied to the assimilated observations 
is determined by comparing estimates of observation error 
covariance with model forecast error covariances sampled 
from a Monte-Carlo ensemble of model replicates—gener-
ated by applying random synthetic perturbations to WEB-
SVAT states, forcing data, and parameters.

Using a 25-member EnKF, 30-m TIR-based ET and 20-m 
SAR-based SSM products are simultaneously assimilated 
into WEB-SVAT to update (multi-layer) model estimates 
of both vine-row and interrow soil moisture. See “Study 
area and data” below for a complete description of these 
remote sensing products. The background WEB-SVAT 
forecast ensemble is generated via multiplicative pertur-
bations applied to precipitation and irrigation forcing esti-
mates— along with additive perturbations applied to LAI, 

air temperature, and incoming solar radiation inputs. The 
EnKF control vector, representing the WEB-SVAT model 
states updated by the EnKF, consists of volumetric soil 
moisture (VSM) estimates for all ten vine-row and interrow 
soil layers (i.e., five soil layers in each tile). See (Lei et al. 
2020) for further details on the implementation of the EnKF 
within VIDA.

Study area and data

Study area

This study was conducted primarily in three vineyard 
blocks managed by E&J Gallo Winery within the Califor-
nia Central Valley. Two adjacent blocks of interest (SLM001 
and SLM002) are located near Lodi, CA (Fig. 2). Soils in 
SLM001 and SLM002 are predominantly Kimball silt loam 
with 0–8 percent slope. SLM001 contains 364 Landsat 30-m 
pixels (26 rows and 14 columns) and SLM002 224 pixels 
(16 rows and 14 columns). Pinot Noir (Vitis vinifera L.) 
was planted in 2009 for SLM001 and 2011 for SLM002. 
However, in early 2020, SLM001 was re-grafted to Cabernet 
Sauvignon and SLM002 to Merlot (Vitis vinifera L.). Both 
SLM001 and SLM002 are equipped with a drip irrigation 
system that has a designed application rate of 4 L per hour 
per vine.

The RIP720 block located near Fresno, CA was planted 
with Merlot in 2010 and contains 156 Landsat 30-m pixels 
(12 rows by 13 columns). Soil texture is loam/sandy loam 
with 0–1 percent slope. RIP720 is equipped with a VRDI 
system capable of separately irrigating each of its 156 30-m 
sub-blocks with a designed application rate of 3 L per hour 

Fig. 2  Location of the SLM and RIP720 vineyard blocks. Profile soil moisture sampling sites are shown as blue triangles and eddy covariance 
flux towers as black circles. Transect surface soil moisture sampling sites within SLM001 and SLM002 are collocated with shown flux towers
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per vine. Specific irrigation amounts in each sub-block are 
achieved by controlling the duration of application.

Vines in SLM001, SLM002, and RIP720 are all trained 
on a split trellis with 1.52-m vine spacing and 3.35-m row 
width and an east–west row orientation. As part of the 
GRAPEX project, extensive monitoring of the micromete-
orological, surface energy balance and profile VSM vari-
ables have been conducted since 2013 at the SLM blocks 
and 2018 at RIP720. Detailed block and instrumentation 
descriptions can be found in (Kustas et al. 2018; Knipper 
et al. 2019b; Wilson et al. 2020; and Semmens et al. 2016). 
The SLM and RIP blocks are each located within a larger 
(100  km2) domain where VIDA was test-run operationally 
during the 2021 growing season (see “Overview of opera-
tional application”).

Ground measurements

For validation purposes, special emphasis is placed on eight 
Landsat 30-m pixels in the SLM001, SLM002, and RIP720 
vineyard blocks containing extensive GRAPEX ground-
based soil moisture instrumentation (Fig. 2).

The SLM001 and SLM002 profile VSM measure-
ments consist of three sets of soil moisture profile sensors 
(HydraProbe, Stevens Water Monitoring System, Portland, 
OR) monitoring 30-, 60-, and -cm depths under the vine-row. 
Nearby (i.e., within 40 m), a SSM transect consisting of five 
equal-distance sensors at 5-cm depth is deployed across a 
vine-row and interrow, with two sensors in the vine-row and 
three sensors in the interrow. Averages obtained across this 
transect are considered comparable to the areal-mean SSM 
obtained from a – 30-m remote-sensing footprint. The SSM 
transects in the SLM blocks are part of a larger SSM sen-
sor array used in a previous soil heat flux study; see (Agam 
et al. 2019) for complete description of the sensor layout. 
Approximately 50 m to the east of each profile soil moisture 
site at SLM, an eddy covariance tower has been collecting 
micrometeorological and surface flux measurements since 
April 2013 (Alfieri et al. 2019). A second five-sensor SSM 
transect is installed immediately adjacent to each flux tower 
site. ET and other surface energy balance components are 
derived from post-processing of the eddy covariance meas-
urements (Alfieri et al. 2019). Given that surface winds are 
predominately from the west, and an assumed flux-tower 
footprint of – 100 m in the upwind direction (Li et al. 2008), 
ET estimates obtained at the flux tower site are assumed to 
be representative of the soil moisture profile pixels.

The RIP720 vineyard block has been divided into four 
quadrants with SSM transect (HydraProbe, see above) and 
profile soil moisture sensors (CS655 TDR probes, Camp-
bell Scientific Inc., Logan, UT) located near the center of 
each quadrant, i.e., the C1, C2, C3, and C4 pixels labelled 
in Fig. 2. In each pixel, a VSM sensor array is deployed 

symmetrically from the center line of a vine-row to charac-
terize both vertical and horizontal variability in the row and 
interrow. Interrow sensors monitor 5- and 30- cm depths 
at 75-cm distance from the centerline, and 5-, 40-, 60- and 
90-cm depths at 165-cm distance. Vine-row sensors moni-
tor 5-, 30-, 60, and 90-cm depths at 15-cm distance and 5-, 
30-, and 60-cm depths at 45-cm distance. Each quadrant of 
RIP720 is also equipped with an eddy covariance flux tower 
located at its southeast corner (approximately 100 m from 
the quadrant center) since April 2018. Given the dominant 
northwest wind direction for the block, surface flux obser-
vations at these towers are considered representative of the 
C1–4 pixels.

Meteorological forcing, irrigation inputs, and soil 
parameters

Hourly meteorological forcing data (i.e., solar radiation, air 
temperature, wind speed, precipitation, and relative humid-
ity) required for WEB-SVAT are obtained from nearby Cali-
fornia Irrigation Management Information System (CIMIS) 
weather stations. Specifically, CIMIS #131 (Fair Oaks) 
observations are used for both SLM blocks and CIMIS #80 
(Fresno State) for RIP720. Surface atmospheric pressure is 
obtained from the North American Land Data Assimilation 
System (NLDAS-2) L4 hourly 0.125° primary forcing data 
set (Xia et al. 2012).

Naturally, grape growers use different irrigation systems 
and scheduling strategies deemed suitable for, among other 
factors, the particular soil, grape cultivar, vine age, desired 
wine quality, and yield targets for individual blocks. Such 
decisions are commonly made weekly during the growing 
season based on the monitoring of meteorological trends 
and vine condition. Except for a small number of study sites, 
both historical irrigation records and real-time irrigation 
information are generally unavailable for the purpose of soil 
water balance modelling. Therefore, multiple realizations 
of synthetically generated irrigation inputs are used to force 
the WEB-SVAT model during the vine-growing season and 
generate a Monte-Carlo ensemble of VSM states reflecting 
uncertainty in irrigation inputs (see “Ensemble kalman fil-
tering”). Specifically, a synthetic irrigation schedule for the 
SLM blocks was generated to match the average frequency 
and total amount of irrigation applied during the 2017–2020 
growing seasons there on a monthly basis (between April 
and September) with an hourly application rate of 4 L/vine 
and converted into water depth estimates using an assumed 
wetting area of 1.2 m × 1.52 m. Given the lack of multi-year 
irrigation records for RIP720, synthetic irrigation is instead 
generated based on estimated growing-season crop water use 
of grape vines derived from average daily growing-season 
reference ET values from 2011 to 2020 obtained from nearby 
CIMIS stations, with a 3 L/vine hourly rate applied to the 
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same wetting area as for the SLM blocks. As noted above, 
irrigation is received only by the WEB-SVAT vine-row tile.

Soil texture data are obtained from the online Web Soil 
Survey service (http:// webso ilsur vey. sc. egov. usda. gov/) pro-
vided by the USDA Natural Resources Conservation Ser-
vice. Hydraulic parameters applied in power curves, describ-
ing the relationship between VSM, saturation hydraulic 
conductivity, and soil–water matric potential (see Lei et al. 
2020, Appendix B) for each soil texture, are based on lookup 
tables provided by (Clapp and Hornberger 1978).

Daily LAI and NDVI time‑series

Leaf area index (LAI) data products at 30-m resolution, 
required by both WEB-SVAT and TIR-based ET retriev-
als, are generated using Harmonized Landsat and Sentinel-2 
(HLS) surface reflectance (SR) products (version 1.4, 3–4-
day, 30-m) (Claverie et al. 2018), the Moderate Resolution 
Imaging Spectroradiometer (MODIS) LAI products (Collec-
tion 6, MCD15A3H, 4-day, 500-m) (Myneni et al. 2002; Yan 
et al. 2016) and LAI field measurements for three GRAPEX 
sites from 2013 to 2019 (White et al. 2019). A reference-
based approach is used to build regression trees between LAI 
and SR using samples from two spatial resolutions (30-m 
and 500-m). The 500-m LAI-SR samples are produced from 
homogeneous MODIS pixels and the aggregated HLS SR 
product (Gao et al. 2012a; Sun et al. 2017). The 30-m LAI-
SR samples are built on the field LAI measurements and 
30-m HLS SR. The 500-m samples include general land 
cover types, while the 30-m samples focus specifically on 
vineyards. This combination of LAI retrievals provides com-
plementary spatial and temporal information, and together 
can be used to produce 30-m LAI fields consistent with both 
MODIS LAI and field measurements (Gao et al. 2013). Once 
LAI and NDVI fields at Landsat-8 and Sentinel-2 overpass 
dates are generated, the smoothing and gap-filling processes 
described in (Gao et al. 2020) are applied to produce daily 
LAI and NDVI fields.

Assimilated satellite ET and SSM retrievals

As discussed above, the VIDA system simultaneously 
assimilates ET and SSM data products derived from satellite 
observations into the WEB-SVAT model. Here we describe 
these two data products in detail.

ALEXI/DisALEXI evapotranspiration

High-resolution (30-m) ET estimates are generated using 
the Atmosphere-Land Exchange Inverse (ALEXI) surface 
energy balance model (Anderson et al. 1997) and associ-
ated spatial disaggregation algorithm (DisALEXI; Norman 
et al. 2003; Anderson et al. 2004). The Two-Source Energy 

Balance (TSEB) model (see “WEB-SVAT” above) provides 
the conceptual foundation for ALEXI and DisALEXI by 
describing the land-surface exchange process for both soil 
and canopy components. ALEXI works by applying TSEB 
at two times during the morning period (– 1 h after sunrise 
and – 1 h before local noon) to estimate the time-integrated 
sensible heat influx into the atmospheric boundary layer, 
with surface temperature inputs (land surface temperature; 
LST) acquired via geostationary satellites. Daily latent heat 
flux is derived using the second LST retrieval (local noon) 
and the ratio of instantaneous to daily insolation following 
(Cammalleri et al. 2014). Due to its reliance on high tempo-
ral frequency LST imagery, ALEXI is typically constrained 
to the coarse spatial resolution of geostationary satellites 
(here 4-km). To map flux distributions at higher spatial reso-
lution we utilize DisALEXI, which consists of executing 
TSEB over a gridded domain using LST retrievals obtained 
from Landsat (30-m, spatially sharpened following Gao et al. 
2012b). The resulting DisALEXI ET maps are subsequently 
assimilated into VIDA with an assumed (one-sigma) obser-
vation error of 0.9 mm  day−1 on days containing successful 
Landsat overpasses. This value is based on ET validation 
studies using flux tower observations acquired in Central 
Valley vineyards sites (Knipper et al. 2020).

Sentinel‑1 surface soil moisture

Remotely sensed surface soil moisture (SSM) retrievals are 
derived from C-band (5.405 GHz) SAR instruments onboard 
the European Space Agency’s Sentinel-1A and 1B satellites. 
The two-satellite constellation provides a theoretical revisit 
frequency of 6 days with an ascending node at 6:00 pm local 
solar time. The interferometric wide swath mode of Senti-
nel-1 maps radar backscatter at 5 m × 20 m resolution on 
240-km swaths. The retrieval algorithm derives SSM at a 
20-m ground resolution using a machine learning approach 
(Greifeneder et al. 2021).

Resulting SSM maps are resampled to the 30-m Landsat 
Worldwide Reference System (WRS) grid (UTM zone 10 N) 
via drop-in-bucket averaging and then, following established 
SSM data assimilation procedure, linearly rescaled to match 
the first (mean) and second (variance) statistical moments of 
the (pre-assimilation) WEB-SVAT SSM time-series for each 
30-m pixel. Given differences in the incidence angle along 
the morning and afternoon Sentinel-1A and 1B tracks, the 
6 am and 6 pm SSM retrievals are rescaled separately and 
then merged for VIDA assimilation. Assimilation is based on 
an assumed SSM retrieval error (one-sigma) of 0.04  m3m−3 
based on comparisons with ground-based SSM observations.

http://websoilsurvey.sc.egov.usda.gov/
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Results and discussion

Pre‑assimilation WEB‑SVAT vine‑row and interrow 
soil moisture estimates

Example pre-assimilation WEB-SVAT modelled vine-row 
and interrow VSM estimates obtained at the RIP720 site 
are shown in Fig. 3 alongside in situ measurements for 
the period October 1, 2019–September 30, 2020. Missing 
VSM observations in the interrow and vine-row between 

October 2019 and January 2020 are due to the removal of 
post-harvest soil moisture sensors during the fall of 2019. 
This removal is necessary since the interrow is disked and 
re-seeded with a cover crop yearly. Although the RIP720 
block is equipped with a VRDI system, the same synthetic 
irrigation schedule, including a post-harvest flooding 
event, is applied to each pixel. The flooding event results 
in peak VSM levels across vine-row and interrow at the 
same time in late October each year, thus resetting the soil 
profile to a fully recharged state.

Fig. 3  Observed (“Obs.”) and WEB-SVAT pre-assimilation (“Mod.”) 
daily average VSM at the RIP720 C1 sampling site between October 
1, 2019 and September 30, 2020 for four soil depths/layers. Observed 
VSM represents the depth indicated, while modelled VSM represents 

the layer average between the two depths given. Rainfall and syn-
thetic irrigation are shown as purple and green bars in part a, respec-
tively
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Between December and March, ground measurements 
indicate generally homogeneous vine-row and interrow 
VSM values responding to winter-precipitation events. How-
ever, multi-layer VSM levels in the row versus the interrow 
diverge in early February due to the start of vine-row (only) 
irrigation. The vigorous application of irrigation to support 
new vine growth in the spring (i.e., mid-April to mid-May) 
maintains high VSM in the vine-row while the interrow 
gradually dries once wintertime precipitation ends. The 
5-cm soil moisture sensors in the vine-row respond rapidly 
to irrigation and remain the wettest (across all soil layers) 
throughout the growing season (Fig. 3a). The 30-, 60-, and 
90-cm in situ sensors (in Fig. 3b–d, respectively) show a 
dampened, but comparable, level of response to irrigation—
indicating good soil permeability and applied water reaching 
(at least) a depth of 90 cm.

Although pre-assimilation WEB-SVAT model results 
capture observed VSM temporal variability reasonably 
well, notable differences do occur. For example, the timing 
of irrigation onset represents a major source of uncertainty 
for the modelling of growing-season RZSM in vineyards. As 
described in “Meteorological forcing, irrigation inputs, and 
soil parameters”, VIDA currently uses a simplified approach 
to synthetically represent irrigation that neglects inter-annual 
variability. The impact of this simplification is seen in mod-
eled VSM during the 2020 growing season, when observed 
vine-row SSM peaks in February and early March (dotted 
blue lines, Fig. 3a). The timing of this peak suggests that 
irrigation began relatively early in the 2020 growing season 
to compensate for reduced wintertime precipitation. In con-
trast, synthetic irrigation inputs for WEB-SVAT do not start 
until April, leading to dry springtime biases in the modelled 
vine-row soil profile (see Fig. 3a–d). Further discussion of 
intra-seasonal irrigation variations will be presented in “Dis-
cussion and conclusions”.

Another notable discrepancy is the inability of pre-
assimilation WEB-SVAT to accurately capture observed 
dry-downs in the surface soil layer (see Fig. 3a) during the 
early summer. This is likely due to the neglect of soil evapo-
ration from the vine-row tile in the vine-only growth stage 
(i.e., Stage III). WEB-SVAT estimates of temporal varia-
tions in deeper soil layers (see Fig. 3c, d) are relatively more 
accurate.

Similar seasonal patterns of vineyard vine-row and inter-
row SSM are observed at the SLM001 transect site in Fig. 4. 
Note that interrow profile VSM is not monitored at SLM. 
However, unlike RIP720 results in Fig. 3, significant (hori-
zontal) irrigation seepage into the interrow is observed (see 
Fig. 4, between July and September 2018). This feature is 
missing in the modelled interrow time-series since WEB-
SVAT assumes that applied water is restricted to the vine-
row and neglects horizontal flows between vine-row and 
inter-row tiles. As a result, pre-assimilation WEB-SVAT 
results appear to over-estimate row versus interrow SSM 
differences.

Fig. 4  Same as Fig. 3 except for only SSM (i.e., 0–5 cm) results at the SLM001 transect site

Table 1  Temporal correlation between observed SSM and pre-assim-
ilation WEB-SVAT or Sentinel-1-retrieved SSM at four separate 
30-m SLM pixels containing in situ SSM transects

Bold and italicized values indicate corresponding p values below a 
0.05 significance level

March–may June–september

WEB-SVAT Sentinel-1 WEB-SVAT Sentinel-1

SLM001 profile 0.937 0.838 0.259 0.672
SLM001 tran-

sect
0.910 0.862 0.360 0.304

SLM002 profile 0.811 0.830 0.180 0.184
SLM002 tran-

sect
0.849 0.843 0.222 − 0.557
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Remote sensing retrieval skill

Our stated goal of improving pre-assimilation WEB-SVAT 
RZSM estimates (see Figs. 3, 4 above) via the assimilation 
of satellite SSM and ET retrievals hinges on the ability of 
available satellite products to detect temporal errors in pre-
assimilation WEB-SVAT soil moisture estimates. Here, we 
evaluate this potential separately for both Sentinel-1 SSM 
and DisALEXI ET retrievals.

Sentinel‑1 SSM

Table 1 compares pre-assimilation WEB-SVAT and Sen-
tinel-1 SSM time-series values with the transect average 
of SSM across the vine-row and interrow for four sepa-
rate 30-m SLM pixels. Both WEB-SVAT and Sentinel-1 
SSM estimates perform relatively well during the spring 

but degrade significantly during the summer. As discussed 
above, irrigation uncertainty is primarily responsible for 
poor WEB-SVAT SSM performance during the summer. On 
the other hand, degraded Sentinel-1 SSM skill in the sum-
mer likely reflects the attenuation of the soil backscattering 
signal caused by denser vine-canopy cover.

However, Sentinel-1 does not generally exhibit bet-
ter temporal SSM skill than pre-assimilation WEB-SVAT 
results—even during the springtime when the vine canopy 
has not yet fully developed. However, Sentinel-1 also does 
not completely lose skill during the summer. For example, 
relatively good summer (i.e., June–September) correlation 
is found in the SLM001 profile pixel where WEB-SVAT 
performs relatively poorly (Table 1). In contrast, relatively 
lower Sentinel-1 correlation in the SLM002 block is likely 
associated with higher local LAI values found there.

Fig. 5  Model pre-assimilation error in SSM (SSMMOD—SSMOBS) 
versus the departure between model pre-assimilation SSM and Sen-
tinel SSM (SSMMOD—SSMSAR) at four instrumented pixels 
within the SLM001 and SLM002 blocks between January 01, 2017 

and June 30, 2019. Data points are distinguished by season (spring: 
March–May, summer: June–September), and the sampled correla-
tion between model error and observation departures is shown in the 
upper left of each subplot
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Given the relatively good background skill of WEB-
SVAT SSM estimates at the SLM001 and SLM002 sites 
in the early growing season, it is important to assess the 
marginal value of assimilating SSM retrievals there. For 
example, the additive skill of Sentinel-1 SSM retrievals 
for improving modelled SSM can be expressed by com-
paring model background error (i.e., pre-assimilation 
WEB-SVAT SSM minus in situ SSM) to model depar-
tures from satellite observations (i.e., pre-assimilation 
WEB-SVAT SSM minus Sentinel-1 SSM) (Fig. 5). When 
both observation departures and modelling errors have the 
same sign, sequential data assimilation increments will 
generally update soil moisture estimates in the correct 
direction and, therefore, improve the overall skill of SSM 
estimates. Paralleling the future treatment of Sentinel-1 

SSM in “Sentinel-1 surface soil moisture” in VIDA, in situ 
SSM data in Fig. 5 are linearly scaled to match pre-assim-
ilation WEB-SVAT SSM statistics prior to the calculation 
of displayed modelling errors. Results in Fig. 5 demon-
strate that pre-assimilation WEB-SVAT error and remote 
sensing observation departures tend to be positively corre-
lated and (generally) possess the same sign. Therefore, the 
assimilation of Sentinel-1 SSM retrievals can reasonably 
be expected to improve upon pre-assimilation WEB-SVAT 
SSM estimates.

DisALEXI ET

Comparable evaluation can be performed for DisALEXI 
ET retrievals. Table 2 examines the temporal correlation 
between various ET estimates and observed RZSM—and, 
therefore,prospects for VIDA accurately constraining RZSM 
through the assimilation of ET retrievals. A strong seasonal 
contrast is found in all comparisons. Observed ET (both 
from flux towers and DisALEXI) generally has a negative 
correlation with RZSM in the spring–which is unsurprising 
given that ample RZSM and low LAI levels in this period 
leads to ET being primarily energy-constrained (versus 
water-limited). This was also found in the multi-year analy-
sis of SLM001 and SLM002 RZSM and tower ET measure-
ments by (Wilson et al. 2020). In such cases, ET is not a reli-
able proxy for RZSM. However, during the summer, the sign 
of the observed ET-RZSM correlation is reversed, indicating 
that vineyard ET is now partially constrained by soil–water 
availability and DisALEXI ET retrievals generally have a 

Table 2  Correlation of flux tower and DisALEXI ET with ground-
based RZSM observations

Bold and italicized values indicate corresponding p values below the 
0.05 significance level

March–may June–september

Flux tower DisALEXI Flux tower DisALEXI

SLM001 profile − 0.577 − 0.350 0.544 0.574
SLM002 profile − 0.469 − 0.410 0.240 0.066
RIP720 C1 − 0.031 0.096 0.449 0.526
RIP720 C2 − 0.244 − 0.069 − 0.034 0.214
RIP720 C3 − 0.175 0.159 0.316 0.584
RIP720 C4 − 0.170 − 0.035 0.056 0.393

Fig. 6  Pre-assimilation WEB-SVAT RZSM errors (RZSMMOD—
RZSMOBS) versus departure between DisALEXI ET and model 
pre-assimilation ET (ETTIR—ETMOD) at SLM between January 
01, 2017 and June 30, 2019. Data points are distinguished by season 

(spring: March–May, summer: June–September) in (a–b). Correla-
tions between model error and observation departures are given in the 
lower left of each subplot
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positive coupling with RZSM (see also Wilson et al. 2020). 
This is consistent with past research that has demonstrated 
the ability of DisALEXI ET to detect the appearance of 
water stress (Knipper et al. 2019b). Comparable results are 
found for flux-tower-based ET in Table 2, demonstrating 
the relatively good agreement between DisALEXI and eddy 
covariance ET estimates at these sites.

Paralleling SSM results in Figs. 5, 6 shows the compari-
son between pre-assimilation WEB-SVAT errors in RZSM 
(defined as 30–60 cm beneath the vine-row) and observed 
departures between WEB-SVAT-modelled ET and Dis-
ALEXI ET. As discussed above, higher efficiency in assim-
ilating DisALEXI ET is expected during summer than in 
spring. However, sampled correlations between modelled 
RZSM errors and observed ET departures in Fig. 6 remain 
relatively small—even during the summertime. This lack of 
correlation appears to be tied to irrigation patterns that (basi-
cally) maintain water-stress-free conditions during the sum-
mer. Studies have shown that grapevines start to show signs 
of stress at – 50% PAW depletion (Keller 2015; Williams and 
Trout 2005), making it a useful threshold below which to 
assume the onset of positive ET-RZSM coupling. However, 
during our period of study, observed RZSM in SLM rarely 

drops below 50% PAW (see Figs. 7, 8 below) —thus limit-
ing summertime opportunities for effectively constraining 
RZSM via the assimilation of ET.

VIDA efficiency and challenges

As described above, the full VIDA system, including the 
assimilation of remote-sensing observations into the WEB-
SVAT model, was run on the SLM001 and SLM002 pro-
file pixels for the period of January 1, 2017 to December 
31, 2020. Note that from January 1, 2017 to June 8, 2019, 
Sentinel-1 SSM and DisALEXI ET retrievals were simul-
taneously assimilated. Afterwards, only DisALEXI ET was 
assimilated due to the discontinuation of Sentinel-1 SSM 
data in early summer 2019. Likewise, VIDA was also run 
on the RIP720 C1-C4 pixels for the period October 1, 2017 
to September 15, 2021 and based on the assimilation of Dis-
ALEXI ET retrievals only.

VIDA application to the SLM blocks

As discussed above, pre-assimilation WEB-SVAT pro-
file soil moisture estimates in SLM (Figs. 7, 8) contain 

Fig. 7  Modelled (pre-assimilation WEB-SVAT in gray and the EnKF VIDA analysis in blue) and observed vine-row profile soil moisture (dark 
lines) for the SLM001 profile pixel from January 1, 2017 to December 31, 2020
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year-to-year and site-to-site variations in growing-season 
model bias caused by our use of a fixed irrigation sched-
ule. A key goal here is minimizing these errors using satel-
lite data assimilation. Unfortunately, VIDA displays only 
limited success in correcting pre-assimilation WEB-SVAT 
errors. While pre-assimilation WEB-SVAT generally over-
estimates RZSM in 2017–2019, it severely underestimates 
RZSM in 2020 when both SLM blocks were grafted to a 
new grape variety and vigorous irrigation throughout the 
growing season was applied to ensure new vine growth. 
Hence, ET in 2020 was limited primarily by the low LAI 
of the newly grafted vines despite high observed RZSM. 
Unfortunately, VIDA misinterprets low DisALEXI ET 
retrivals as water stress caused by low RZSM levels and, 
as a result, exacerbates the dry bias found in 2020 pre-
assimilation WEB-SVAT estimates.

Table  3 summarizes the root-mean-square error 
(RMSE) and Pearson’s correlation metrics of the vine-
row 30–60  cm RZSM from (pre-assimilation) WEB-
SVAT results and the EnKF-based VIDA analysis. Except 
for relatively significant improvements during the sum-
mer months in the SLM001 pixels, pre-assimilation 

WEB-SVAT RZSM estimates at SLM during the growing 
season are generally degraded in VIDA results reflecting 
the assimilation of satellite retrievals.

These results highlight two major challenges for VIDA. 
First, a single prescribed irrigation schedule is often inca-
pable of adequately characterizing year-to-year variation 
in real irrigation practices. Second, data assimilation may 
result in degraded RZSM estimates when an underlying 
assumption of positive ET-RZSM coupling does not hold. 
Potential solutions to these challenges are discussed later 
in “Discussion and conclusions”.

VIDA application to the RIP720 block

Due to the lack of local Sentinel-1 SSM retrievals, only Dis-
ALEXI ET is assimilated in the RIP720 block. Nevertheless, 
somewhat more positive VIDA results, i.e. greater improve-
ment due to data assimilation, are obtained at RIP720 than 
at SLM001 and SLM002 (Table 3). In particular, VIDA 
improves the temporal precision of summertime RZSM 
estimates.

Fig. 8  Same as Fig. 7 but for the SLM002 profile pixel
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However, other challenges also emerge at RIP720. As 
discussed in “DisALEXI ET” ET has only modest skill as 
an RZSM proxy in the spring when ET is energy limited 
(Fig.  6). However, while observed ET-RZSM coupling 
increases (i.e., becomes more strongly positive) during 
the summer (Table 2), WEB-SVAT fails to make the same 
transition (Table 4). This is problematic because the EnKF 
underlying VIDA results uses internal WEB-SVAT ET-
RZSM coupling estimates as a guide for extrapolating the 
impact of ET retrievals onto (unobserved) RZSM state esti-
mates. As a result, the weak or negative internal ET-RZSM 
coupling in WEB-SVAT dampens the magnitude of EnKF 
RZSM updates in VIDA.

An interesting contrast in data assimilation outcomes 
is seen between the 2019 and 2021 growing seasons at 
RIP720–where pre-assimilation WEB-SVAT results over-
estimate and underestimate observed RZSM, respec-
tively (Fig. 9). Inter-annual variations in winter rainfall are 
responsible for both the relatively late start of irrigation in 
2019 and the relatively early start in 2021. In both years, 
the neglect of interannual variation in assumed irrigation 
causes large pre-assimilation WEB-SVAT RZSM biases dur-
ing the spring and early summer. Early-season irrigation in 
2021 also appears to be higher than average, as there is no 
observed RZSM dry-down transitioning into the vine-only 
stage (i.e., Stage III). The assimilation of DisALEXI ET in 
VIDA successfully corrects the dry bias in 2021 but not the 
corresponding wet bias 2019. This likely reflects the lack of 
coupling between RZSM and ET during wet conditions—
which ensures that VIDA is better suited for correcting a dry 
RZSM bias than a wet one.

Overview of operational application

As part of a project sponsored by the NASA Water 
Resources Applied Science Program, the VIDA system was 
applied operationally during the 2021 growing season for 
all vineyards within two 100-km2 domains in the California Ta
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Central Valley (see Fig. 9). Note that the northern “Sacra-
mento” domain (in Sacramento County, CA) includes the 
SLM001 and SLM002 blocks, and the southern “Madera” 
domain (in Madera County, CA) includes the RIP720 block. 
All required VIDA inputs described above in “Meteorologi-
cal forcing, irrigation inputs, and soil parameters”, “Daily 
LAI and NDVI time-series” can be readily scaled up to cover 
these larger domains at 30-m resolution. Likewise, assimi-
lated Sentinel-1 SSM and DisALEXI ET retrievals are avail-
able operationally (at 2–3 day latency) within both domains. 
Based on these inputs, the VIDA operational production sys-
tem generated daily averaged 30-m RZSM (30–60 cm) esti-
mates for each Wednesday during the 2021 growing season 
(roughly April 1 to September 30). RZSM estimates of vine-
yards operated by E&J Gallo Winery were then extracted 
and delivered to Gallo by the following Monday. Figure 9 
includes an example of the RZSM imagery generated during 
the 2021 growing season for the Madera domain.

Discussion and conclusions

While RZSM is commonly recognized as an important vari-
able for the tracking of vineyard water stress, it is seldom 
directly applied to irrigation decision support. This is largely 
due to the difficulty of obtaining suitable RZSM estimates. 
To be of direct value for irrigation decision support, RZSM 
estimates must be available at: (i) an appropriate vertical 
soil depth (typically 30 to 60 cm), (ii) a daily time scale, (iii) 
fine horizontal spatial resolution (likely 30-m in the case of 

VRDI), and (iv) moderate data latency (likely < 5 days). No 
single RZSM estimation technique can currently meet all of 
these requirements. In order to leverage both dynamic water-
balance modelling and static satellite remote sensing, the 
VIDA approach— illustrated retrospectively in “Results and 
discussion” and then operationally in “Overview of opera-
tional application”–is based on the use of a distributed soil 
water balance model to provide the background for the sub-
sequent sequential updating of soil water profile states using 
microwave and TIR remote sensing products.

Ignorance concerning the timing and amount of irriga-
tion inputs, both during and after the growing season, rep-
resents the primary source of growing-season uncertainty in 
vineyard RZSM estimates derived from soil water balance 
modelling (i.e., WEB-SVAT). The VIDA system is based 
on the hypothesis that, if properly assimilated, microwave-
based SSM and TIR-based ET retrievals can be used to 
reduce random model-based RZSM errors associated with 
irrigation uncertainty. Therefore, if the VIDA system is to 
be successfully applied across regional-scale domains (see, 
e.g., “Overview of operational application”), it must first be 
robust in the presence of (unknown and inevitable) inter- and 
intra-annual variations in the application of irrigation.

While there is evidence that the assimilation of both 
Sentinel-1 SSM retrievals and DisALEXI ET estimates can 
compensate for dynamic errors present in the WEB-SVAT 
background (see Figs. 5, 6), the net impact of SSM and ET 
assimilation on RZSM accuracy is relatively modest and 
varies widely between sites (Table 3). The lack of uniform 
improvement associated with the assimilation of Sentinel-1 

Fig. 9  Location of the Sacramento and Madera 100-km2 opera-
tional production vineyard domains in the California Central Valley 
(left) and an example of an operational VIDA RZSM map on June 
30, 2021 for the Madera domain (right). Note that the Madera domain 

contains the RIP720 block while the Sacramento domain contains the 
SLM001 and SLM002 blocks discussed above. Results are shown 
only for areas with vineyard land use
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SSM retrievals and DisALEXI ET can be attributed to a 
number of unresolved issues.

First, the detection of inter-annual variability in irrigation 
remains a key challenge. The VIDA system uses random 
perturbations applied to an assumed irrigation baseline to 
generate a Monte Carlo ensemble of irrigation realizations 
that are, in turn, applied to generate a subsequent ensemble 
of modelled soil water profiles. The EnKF, at the core of 
the VIDA system, then samples variance and covariance 
statistics from this ensemble to guide the assimilation of 
SSM and ET remote sensing retrievals. Our current method 
for generating this baseline (see “Meteorological forcing, 
irrigation inputs, and soil parameters”) is simplistic and 
assume that irrigation is a spatially (i.e., within the same 
geographic domain) and temporally (i.e., year-to-year) sta-
tionary process. As a result, it fails to capture inter-annual 
irrigation variations due to abnormal climate (e.g., anoma-
lous springtime rainfall totals) or shifts in vineyard manage-
ment (e.g., vine re-grafting). This is problematic because the 
VIDA EnKF formulation is based on the implicit assumption 
that the irrigation ensemble is unbiased. As a result, VIDA 
will fail to update RZSM appropriately in the presence of 
large inter-annual variability in irrigation applications. This 

tendency is clearly seen in the RIP720 C3 pixel (Fig. 10) 
where inter-annual variations in springtime (April–May) 
irrigation totals cause WEB-SVAT to badly overestimate 
RZSM in 2019–2020 and underestimate RZSM in 2021. 
Unfortunately, the subsequent assimilation of Sentinel-1 
SSM and DisALEXI ET retrievals leads to only marginal 
correction of this bias. This suggests the need for more com-
plex background assumptions regarding vineyard irrigation 
schedules. The development of a more adaptive irrigation 
baseline, based on field conditions such as weather, veg-
etation indices, and soil water storage, is currently under 
investigation.

A second (related) unresolved problem is limitations in 
the use of remotely sensed ET retrievals as a RZSM proxy. 
Note that the current VIDA system is based on the use of 
DisALEXI ET as a diagnostic proxy for RZSM availability 
and not as a flux estimate (to constrain temporal variations in 
RZSM). This decision was based on past research showing 
the ability of DisALEXI ET retrievals to diagnose dynamic 
water stress in vineyards (Knipper et al. 2019b). However, 
(Knipper et al. 2019b) also showed that this diagnostic capa-
bility is degraded if there is a significant temporal gap or 

Fig. 10  Modelled and observed vine-yard RZSM (30–60 cm) for the RIP720 C1-C4 pixels between January 1, 2018 and September 15, 2021
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delay in acquiring higher resolution Landsat data over the 
area of interest.

While the quality of DisALEXI vineyard ET retrievals is 
quite high (Knipper et al. 2019a; 2020), preliminary VIDA 
results also highlight their limitations as an RZSM proxy. 
Vine ET varies as a complex function of LAI, canopy radia-
tion loading, micro-meteorological factors, and soil–water 
availability. The VIDA system relies on the WEB-SVAT 
model to accurately represent this dependence and define 
an appropriate RZSM update in response to observed Dis-
ALEXI ET variations. However, as noted in “Results and 
discussion”, there are long periods of time where temporal 
ET dynamics are effectively de-coupled from RZSM and 
instead reflect changes in canopy LAI and/or micromete-
orological conditions. In particular, ET loses sensitivity to 
RZSM during periods in which it is energy-limited and will 
therefore struggle to detect cases when irrigation application 
is significantly underestimated by background WEB-SVAT 
simulations. These tendencies are clearly seen in the results 
presented above. For example, VIDA is unable to correct the 
dry bias in springtime RZSM seen in the RIP720 C2 pixel 
during 2020 (see Fig. 10). Likewise, VIDA can misattrib-
ute reductions in ET to RZSM limitations that in reality are 
caused by relatively low LAI conditions. This can cause a 
spurious decrease in VIDA RZSM results—as observed in 
SLM001 and SLM002 during the 2020 growing season (see 
Figs. 7, 8). Another potential issue with DisALEXI ET is its 
inability to quickly respond to the onset of irrigation in the 
springtime, as the availability of its 30-m component (i.e., 
LST), nominally anchored by an 8-day Landsat overpass 
interval, is often even less frequent due to the decreased 
number of clear data acquisition days.

A final danger is that, even in cases where coupling 
between RZSM and ET is present, it will not be accurately 
captured by WEB-SVAT. This is problematic since VIDA 
relies on WEB-SVAT to capture the relationship between 
unobserved fluxes (e.g., ET) and unobserved model states 
(e.g., RZSM). As seen in “DisALEXI ET”, “VIDA applica-
tion to the RIP720 block” when the observed ET-RZSM 
relationship transitions into a positive correlation during 
the summer (from the negative correlation in the spring), 
WEB-SVAT still consistently underestimates the true level 
of ET-RZSM coupling (compare Tables 2, 4). In such cases, 
VIDA will squander the value of observed ET as a RZSM 
constraint.

Comparable limitations also exist for Sentinel-1 SSM 
retrievals. In particular, during the middle portion of the 
growing season, their accuracy is degraded by dense vine-
canopy coverage. In addition, the shallow vertical support 
(< 5 cm) of SAR-based SSM retrievals makes it difficult for 
them to detect drip irrigation—which, by design, leaves a 
wetting pattern over a relatively small fraction of a vine-
yard’s soil surface.

Finally, the use of a simplified 1-D soil water balance 
model may introduce errors into estimated RZSM levels. 
Within VIDA, the horizontal flux of soil water between row 
and interrow tiles is neglected due to the required complex-
ity and computational cost of 3-D modeling, which makes 
it difficult to scale the approach up to larger domains, and 
the relative lack of topographic variability within Central 
Valley vineyards. However, Fig. 4 suggests that, even for 
relatively flat vineyards, the neglect of lateral soil–water 
movement may introduce error in some scenarios such as 
over-irrigation, when water applied exceeds the infiltration 
capacity of the upper layers, leading to horizontal flow into 
the interrow.

Despite the scale of these challenges, notable opportuni-
ties exist for improving the extraction of vineyard irriga-
tion information from remote sensing observations. Based 
on our preliminary results, it appears necessary to consider 
the value of DisALEXI ET observations as both a RZSM 
diagnostic proxy and a prognostic indicator of RZSM loss 
rates. Such dual flux/state approaches have been applied pre-
viously in other land data assimilation systems (Chen et al. 
2014) and may be of value here. Furthermore, L-band SSM 
retrievals available from the upcoming NASA-ISRO Syn-
thetic Aperture Radar (NISAR) mission (expected by 2023) 
should improve upon the (C-band) Sentinel-1 SSM retrievals 
currently applied in VIDA. In particular, NISAR’s L-band 
capability should improve our ability to resolve SSM under 
dense vine cover and increase the vertical support of SSM 
retrievals within the soil column. Likewise, improvements in 
the temporal responsiveness of TIR-based ET observations 
have been achieved by augmenting the HLS dataset with 
Sentinel-2-sharpened VIIRS (Visible Infrared Imaging Radi-
ometer Suite) as a thermal proxy source, thus achieving a 
potential combined frequency of 2–3 days (Xue et al. 2021). 
Moreover, a spectral-based ET approach using Sentinel-2 
data recently evaluated over vineyards could also improve 
the frequency of ET retrieval (D’Urso et al. 2021). Finally, 
new opportunities also exist for using remote sensing obser-
vations to critique, and improve upon, the representation of 
ET versus RZSM coupling in land surface models such as 
WEB-SVAT (Dong et al. 2020). Future research will prior-
itize these possibilities to improve upon preliminary VIDA 
RZSM assimilation results presented here.
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